A Robust Modular Wavelet Network Based Symbol Classifier

نویسندگان

  • Akshaya Kumar Mishra
  • Paul W. Fieguth
  • David A. Clausi
چکیده

This paper presents a robust automatic shape classifier using modular wavelet networks (MWNs). A shape descriptor is constructed based on a combination of global geometric features (modified Zernike moments and circularity features) and local intensity features (ordered histogram of image gradient orientations). The proposed method utilizes a supervised modular wavelet network to perform shape classification based on the extracted shape descriptors. Affine invariance is achieved using a novel eigen-based normalization approach. Furthermore, appropriate shape features are selected based on the interand intra-class separation indices. Therefore, the proposed classifier is robust to scale, translation, rotation and noise. Modularity is introduced to the wavelet network to decompose the complex classifier into an ensemble of simple classifiers. Wavelet network parameters are learned using an extended Kalman filter (EKF). The classification performance of proposed approaches is tested on a variety of standard symbol data sets (i.e., mechanical tools, trademark, and Oriya numerals) and the average classification accuracy is found to be 98.1% which is higher compared to other shape classifier techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrimination of the Heart Ventricular and Atrial Abnormalities via a Wavelet-Aided Adaptive Network Fuzzy Inference System (ANFIS) Classifier

The aim of this study is to address a new feature extraction method in the area of the heart arrhythmia classification based on a metric with simple mathematical calculation called Curve-Length Method (CLM). In the presented method, curve length of the under study excerpted segment of signal is considered as an informative feature in which the effect of important geometric parameters of the ori...

متن کامل

Performance of the Wavelet Transform-Neural Network Based Receiver for DPIM in Diffuse Indoor Optical Wireless Links in Presence of Artificial Light Interference

Artificial neural network (ANN) has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT) with both the time and the frequency resolution provides the exact representation of signal in both doma...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

Intelligent and Robust Genetic Algorithm Based Classifier

The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009